Nutrition Support Calculations

WINTER 2013
Rachel Crawford
*See the calculations section at the end of this document for the full calculations *

1. Determine the following for Ensure at $68 \mathrm{ml} /$ hour (Note: when working with volumes of formula for enteral formula, it is expressed in total volume $/ \mathrm{ml}$ not as cans or ounces. For example: 1200 ml 's, not 5 cans)
a. Total volume: 1632 mL
b. Total calories: 1730 Kcal
c. Protein (grams): 62 g
2. Determine the following for Jevity1. 2 at $120 \mathrm{ml} /$ hour:
a. Total volume $(\mathrm{ml}): 2880 \mathrm{~mL}$
b. Total calories: 3456 Kcal
c. Total protein (g): 160 g
d. Free water (ml): 2324 mL
e. Fiber (g): 52 g
3. How much Perative would need to be delivered to provide about 2,500 calories and about 130 protein?
Total volume in ml's: 1932 mL
4. Calculate the following for Procalamine at $100 \mathrm{ml} \times 24$ hours.
a. Protein (grams): 72 g
b. Total calories: 598 Kcal
c. Total non-protein calories (NPC): 310 Kcal
5. Calculate how much Impact is necessary to provide 80 grams of protein. What is the total volume, calories and free fluid that it would provide?
a. Total volume (ml): 1429 mL
b. Total calories: 1429 Kcal
c. Free fluid (water) (ml): 1219 mL
6. How many cans of Nutren 2.0 are necessary to provide 1250 calories? How much protein does it provide? How much free fluid? (when supplements are consumed PO, they are usually expressed in cans/day)
a. \# of cans: 2.5 cans
b. Protein (g): 50 g
c. Free Fluid: 438 mL
7. Determine the following for someone who consumed 3 and one-half cans of Boost.
a. Calories: 840 Kcals
b. Protein (g): 35 g
8. How much of the following nutrients would be provided in 2 Glucerna meals bars?
a. Kcals: 420 Kcal
b. Protein: 20 g
c. Overall \% of DV: $\underline{30 \%}$
9. For the following Standard TPN solution, calculate the requested information:

2800 ml of $50 \% \mathrm{CHO}$ and $8.5 \% \mathrm{AA}$.
a. Protein (grams): 119 g
b. Total NPC: 2380 Kcal
c. Total calories: 2856 Kcal
10. Calculate the nutritional provisions in a standard solution of $2,450 \mathrm{ml} 50 \% \mathrm{CHO}, 10 \%$ protein, and 10% lipids (500 ml 's) QOD
a. Protein (grams): 123 g
b. Total NPC: 2358 Kcal
c. Total calories: 2848 Kcal
11. Calculate the following: $1,200 \mathrm{ml}$ of $70 \% \mathrm{CHO} ; 1,000 \mathrm{ml}$ of 8.5% protein; and 20% lipids (in 500 ml bag) given QOD to a 74 kg person.
a. Protein (grams): 85 g
b. Total NPC (average/day): 3356 Kcal
c. Total calories: 3696 Kcal
d. Fat load: $0.76 \mathrm{~g} / \mathrm{kg}$
e. $\quad \mathrm{CHO}$ load: $7.9 \mathrm{mg} / \mathrm{kg} / \mathrm{min}$
f. What is the max amount of CHO for this person: 746 g
12. MC is starting on TPN (wt. 61 kg). You determined his needs to be $2,650 \mathrm{kcals} /$ day and protein needs at 91 grams. He will get 10% lipids 3 times/week. Write a TPN order using 60% dextrose and 8.5% AA (include protein calories) to meet his needs:
a. Volume CHO (60%): 1005 mL
b. Volume Pro (8.5\%): 1071 mL
c. Average daily lipid calories: 236 Kcal
d. Fat load: $0.35 \mathrm{~g} / \mathrm{kg}$
e. \quad CHO load: $6.9 \mathrm{mg} / \mathrm{kg} / \mathrm{min}$
13. Design a TPN formula to provide 1840 calories and 65 grams of protein for a 59 kg person. Remember the minimum lipid requirements. Make sure the person receives adequate fluid.

	\%	Volume (ml)	
CHO	$\mathrm{D}_{40}(40 \%)$	850 mL	
Protein	8.5\%	764 mL	
Fat	10\%	$\begin{aligned} & \hline \text { Volume: } \\ & 385 \mathrm{~mL} \end{aligned}$	$\begin{aligned} & \text { Frequency: } \\ & 2 \text { bags } 3 \text { times a } \\ & \text { week } \end{aligned}$
Fat load	$0.7 \mathrm{~g} / \mathrm{kg}$		
CHO load	$3 \mathrm{mg} / \mathrm{kg} / \mathrm{min}$		

14. JT is receiving both Procalamine and Jevity 1.0. He is tolerating Jevity at only 40 $\mathrm{ml} /$ hour which doesn't meet his protein needs of 90 grams. How much Procalamine does he need and at what rate over 24 hours to meet his total protein needs?
a. Procalamine (grams protein): 47 g
b. Procalamine (volume): 1621 mL
c. Rate of Procalamine: $68 \mathrm{~mL} /$ hour
d. Kcals provided by Jevity: 1018 Kcal
15. Find a product that will provide 1,200 calories and >60 grams pro in less than $1,000 \mathrm{ml}$ and osmolality less than 600 mOsm . How much must be delivered?
Diabetisource AC: $1,000 \mathrm{~mL}$
16. Calculate the following for Jevity 1.5 half strength (diluted in equal water-i.e. $1 / 2$ of the total volume is added water) at $83 \mathrm{ml} /$ hour over 22 hours.
a. Calories: 1370 Kcal
b. Protein: 58 g
c. Total volume: 913 mL Jevity, 1826 mL total
d. Free fluid from Jevity 1.5: 694 mL
e. Total free fluid provided (added water plus Jevity free fluid): 1607 mL
17. Design a tailor-made formula providing 112 grams protein, 2,875 total calories, and 3,100 ml 's total fluid ($\pm 100 \mathrm{ml}$'s) for an 89 kg person. Complete the table below.

	Initial Stock concentration	Total grams	Total volume
Amino acids	7.0%	112	1600 mL
Dextrose	$\mathrm{D}_{60}(60 \%)$	513	855 mL
Fat	10%	62	621 mL
CHO load	$4 \mathrm{mg} / \mathrm{kg} / \mathrm{min}$		
Fat load	$0.69 \mathrm{~g} / \mathrm{kg}$		
Final AA concentration	3.6%		
Final dextrose concentration	16.7%		
Total final volume	3076 mL		

Calculations:

Nutrition Support Calculations

1. Ensure 68 myhar
a) Total volume: $\frac{68 \mathrm{~mL}}{\text { hour }} 24$ hars $=1632 \mathrm{~ms}$
b) Total clars: $\frac{1632 \mathrm{~m} / 11.06 \mathrm{kal}}{\mathrm{mc}}=1730 \mathrm{KCa}$
c) Protin $(\mathrm{g}): \frac{1632 \mathrm{mc}}{237 \mathrm{mc} / \mathrm{can}_{n}}=6.886 \mathrm{cms} \times 9 \mathrm{~g}$ Protin/can $=62 \mathrm{~g}$
2. Jevity $120 \mathrm{~mL} / \mathrm{hour}$
a) Total volume (mL): $\left.\frac{120 \mathrm{n}}{\text { hair }} \right\rvert\, 24$ hars $=2880 \mathrm{ml}$
b) Total calorits: $\frac{2880 \mathrm{~m} / 1.2 \mathrm{~kL}}{\mathrm{~mL}}=3456 \mathrm{kGl}$
c) Total Protion (g): $\frac{2880 \mathrm{my}}{\frac{\mathrm{can}}{237 \mathrm{mc}}}=12.152 \mathrm{cans} \times 13.2 \mathrm{~g} / \mathrm{kn}=110 \mathrm{~g}$

e) Fibe: $\frac{2880 \mathrm{~m} / \mathrm{Can}}{237 \mathrm{~mL}}=12.152 \mathrm{cos} \times 4.3 \mathrm{~g} / \mathrm{con}=52 \mathrm{~g}$
3. 2,500 Galores w/ 130 g protein-Perative

$$
\begin{aligned}
\frac{2,500 \mathrm{kan} / \mathrm{can}}{1300 \mathrm{Kal}}=1.92 \times 1000 \mathrm{ml} / \mathrm{con}=1923 \mathrm{~mL} \\
1.92 \mathrm{cms}+66.79 \text { Prock } / \mathrm{can}=128 \mathrm{~g} \text { prokin }
\end{aligned}
$$

4. Procalamme at $100 \mathrm{~mL} \times 24$ hours
a) Prottin (g): $100 \mathrm{~mL} \times 24$ haurs $=2400 \mathrm{~mL}$
$\frac{2400}{1000}=2.4 \angle 30 \mathrm{~g}$ prokn $/ \mathrm{L}=72 \mathrm{~g}$
b) total Caloritis: 72 g prokm $\times 491 \mathrm{KGl}=288 \mathrm{kcal}$ from protein $\frac{x}{2400 \mathrm{~mL}}=3 \%$
$x=72 \mathrm{~g}$ glyarol 72 g glyerol $\times 4.3 \mathrm{~g} / \mathrm{kel}=309.6 \mathrm{kal} \mathrm{NPC}$

- $288+309.6=598 \mathrm{Kcal}$
C) Total Non-protencalaris (NPC):
5.80 g protin from Impact
a) $\frac{80 \mathrm{~g} \frac{1000 \mathrm{~mL}}{56 \mathrm{~g}}}{51428.6 \mathrm{~mL}}=$ total volume (mx)
b) Total Calores: $1.428 \mathrm{~L} \times 1000 \mathrm{KGIK}=1428.6 \mathrm{kGa}$
c) Free wate (mL): $\frac{1428 \mathrm{~mL} / \frac{853 \mathrm{~mL}}{1000 \mathrm{~mL}}=1219 \mathrm{~mL}}{142}$

6. Nutren 2.0 to provide 1250 KCal . protein, free fid
a) \#of cans: $\frac{1250 \mathrm{kcal} \frac{1 \mathrm{can}}{500 \mathrm{kcal}}=2.5 \mathrm{cans}}{}$
b) Prokin $(\mathrm{g}): \frac{2.5 \text { cons } \left\lvert\, \frac{20 \mathrm{~g} \text { proving }}{\text { Can }}\right.}{}=50 \mathrm{~g}$ protein

7. $3 \frac{1}{2}$ Cans Boost
a) total calories: $3.5 \mathrm{cans} / \frac{240 \mathrm{kcal}}{\text { can }}=420 \mathrm{kcal}$
b) $\operatorname{Protin}(9): \frac{3.5 \cos 5 / \frac{10 \mathrm{~g}}{\mathrm{can}}}{35 \mathrm{~g}}$
8.2 Glucerna meals bars

b) Prokin (g): $\frac{2 b a r s}{} \left\lvert\, \frac{109}{\text { bar }}=20 \mathrm{~g}\right.$
c) Overall \% DU: average of all \% DV on bar $=30 \%$
8. 2800 mL of 50% CH, 8.5% AA
a) Protin (g): $2800 \mathrm{~mL} / 2=1400 \mathrm{~mL}$

$$
1400 \mathrm{~mL} \times 0.085 \mathrm{AA}=119 \mathrm{~g} \text { protein }
$$

b) Tola $\mathrm{NPC}: 1400 \mathrm{~mL} \times 0.5 \mathrm{CHO}=700$

$$
700 \times 3.4=2380 \mathrm{NPC}
$$

c) Total $\mathrm{K}(a)$: 119 g protein $\times 4 \mathrm{kcal} / 9=476 \mathrm{kcal}$

$$
4>6+2380=2856 \text { kcal }
$$

$10.2,450 \mathrm{nc}, 50 \%$ (Ho, 10% protein, 10% lipids $1500 \mathrm{~m} / \mathrm{s}$) QuOD
a) Protein (g): $2,450 \div 2=1225 \mathrm{~mL}$

$$
1225 \mathrm{mc} \times 0.10 \mathrm{AA}=122.5 \mathrm{~g} \text { protein }
$$

b) total NPC: $1225 \mathrm{mc} \times 0.5 \mathrm{cHo}=612.5 \mathrm{~g}$

$$
612.5 \times 3.4 \mathrm{kcal} / \mathrm{g}=2082.5 \mathrm{kcal} \text { from (t) }
$$

7 days $/ 2=3.5 \quad 550 \mathrm{kcaltax} \times 3.5=1925 \mathrm{kcal} / \mathrm{wrek}$

$$
1925 \mathrm{k}(\mathrm{a}) / \text { week } \div 7=275 \mathrm{k}(\mathrm{a}) / \text { day from fat }
$$

$$
2082.5+275=2358 \mathrm{NPC}
$$

$$
490+2358 \text { NFC }=2848 \mathrm{kcall}
$$

11.1,200 mL, 70% CHI ; $1,000 \mathrm{~mL} 8.5 \%$ Protein; $20 \% 1$ ip ids $Q 0 D$ Patient $=74 \mathrm{~kg}$
a) Protein $(\mathrm{g}): 1000 \mathrm{~mL} \times 0.085=85 \mathrm{~g}$
b) total NPC: $1200 \times 0.7=840 \mathrm{~g}(\mathrm{HO} \times 3.4 \mathrm{kcal} / \mathrm{g}=2556 \mathrm{kcal}$ 1000 kcal tom fat $\times 3.5=3500 / 7=500 \mathrm{kcal}$ $2856+500=3356$ UPC
c) total Kcal: 85 g proton $\times 4 \mathrm{kcal} / \mathrm{g}=340+3356=3696 \mathrm{Kcal}$
d) fat load: $=\frac{9}{\mathrm{~kg}}$

1129
$\times 35$
$\frac{\times 3.5}{3929} \quad$ fat $10 a d=\frac{56 \mathrm{~g}}{74 \mathrm{~kg}}=0.7691 \mathrm{~kg}$

$$
\frac{7}{56 \text { g/day }}
$$

e) CHO load: $840 \mathrm{~g} \mathrm{CHO} /$ day $\times 1,000=840,000 \mathrm{mg} \mathrm{CHO}$ CHO load $=m \mathrm{cHo} / \mathrm{kg} / \mathrm{min}=7_{\mathrm{mg}} / \mathrm{kg} / \mathrm{mm}=\max$ $840,000 / 74 / 1440=7.88=7.9 \mathrm{mg} / \mathrm{kg} / \mathrm{min}$
f) max CHO load: $7 / 74 / 1440=745.9=746 \mathrm{mg} / \mathrm{kg} / \mathrm{min}$
12. $M C=61 \mathrm{~kg}$. Needs $2,650 \mathrm{kcal} /$ day $\mathrm{w} / 91 \mathrm{~g}$ Protein. $10 \% / \mathrm{lipids}$
3×1 week. Use 60% dextrose, 8.5% AA
a) volume $\mathrm{CHO}(60 \%)$: fat $/ 550 \mathrm{k}$ cal foo fat

$$
\begin{aligned}
& \frac{x}{1650 \mathrm{kal} / \text { week }} \\
& \frac{7}{236 \mathrm{kcal} / \text { day }}
\end{aligned}
$$

$2650-236=2414 \mathrm{kcal}$
9) 9 protein $\times 4 \mathrm{kca}) / \mathrm{g}=364 \mathrm{kcal}$
$2414 \mathrm{kcal}-364 \mathrm{kcal}=2050 \mathrm{kcal}$
$x(3.4)=2050 \mathrm{mal}$
$x=603 \mathrm{~g} \mathrm{CHO} / 0.6=1005 \mathrm{~mL} \mathrm{CHO}$
b) volume protein: $\frac{919}{0.085}=1071 \mathrm{~mL}$ protein solution
c) 550 Kcal from fat $\times 3=1650 \mathrm{kcal} /$ wack $\div 7=236 \mathrm{~K}(\mathrm{ca}$ / day
d) fat load: $\frac{\mathrm{gg}}{\mathrm{Kg}} 50 \mathrm{~g}$ fat

$$
\begin{array}{r}
\frac{\times 3}{150} \\
\frac{7}{21.4}
\end{array} \quad \frac{21.4}{61 \mathrm{~kg}}=0.35
$$

e) CHO load: $\mathrm{mg} / \mathrm{kg} / \mathrm{min}$

$$
603 \mathrm{~g} \mathrm{CHOX1,000}=603,000 / 61 \mathrm{~kg} / 1440=6.86=\frac{6.9}{\mathrm{mg} / \mathrm{kg} \mathrm{~min}}
$$

* I Chose
a $8.5 \% \mathrm{AA}$
Solution and
D yo Solution
with a CHO
load of 4
mg $/ \mathrm{kg} / \mathrm{min}$ and
a 10% 1pipd
solution

13. Patient $=59 \mathrm{~kg}$. Needs 1840 k (al, 65 g protein
fluid

$$
52 \times 30-35 \mathrm{~m} / \mathrm{kg}=1950-2275 \mathrm{ml} / \text { day }
$$

Protive

$$
\frac{65}{0.085}=\frac{764 \mathrm{~mL} 8.5 \% A A}{4 \mathrm{mg} / \mathrm{ka} / \mathrm{min}} \quad 65 \mathrm{~g} \text { protein } \times 4 \mathrm{kcal} / \mathrm{g}=260 \mathrm{kcal} \text { prom }
$$

CHO CHO load $=4 \mathrm{mg} / \mathrm{kg} / \mathrm{min}$

$$
\begin{gathered}
4 \times 59 \mathrm{~kg} \times 1440=339706 \mathrm{mg} \div 1,000=340 \mathrm{~g} \\
340 \mathrm{~g} \times 3.5 \mathrm{k}(\mathrm{ca} / \mathrm{g}=1155 \mathrm{kc} \text { cal from CHO } \\
\frac{340 \mathrm{~g}}{0.4}=850 \mathrm{~mL} 40 \% \text { dextrose solution }
\end{gathered}
$$

$1840 \mathrm{Kcal}-1155 \mathrm{Kcal}$ from $\mathrm{CHO}-260 \mathrm{Kcal}$ from protein $=425 \mathrm{Kcal}$
Fat

$$
\frac{425 \mathrm{kcal}}{550 \mathrm{kcal} / \mathrm{bag}}=0.77 \mathrm{bags} / \text { day } \times 500 \mathrm{ml} / \mathrm{brg}=385 \mathrm{~mL} / \text { day }
$$

425 k cal $/$ day $\times 7=\frac{2975 \mathrm{~K}(\text { al } / \text { week }}{500 \mathrm{~mL} / \mathrm{bag}}=6$ bags /week or $\frac{3 \text { bags }}{3 \text { a week }}$

$$
f_{a}+l_{\text {o ad }}=\frac{9}{\mathrm{~kg}} \quad \text { NOLO }
$$

$$
0.77 \times 50 \mathrm{~g}=\frac{39 \mathrm{~g} \mathrm{tat}}{59 \mathrm{~kg}}=0.66=0.791 \mathrm{~kg}
$$

$=364 \mathrm{ml}+850 \mathrm{mlt}$
$385 \mathrm{~mL}=\frac{\pi 999 \mathrm{~mL}}{}$
14. Jevity 1.0 at $40 \mathrm{ml} /$ hour. needs 90 g protein w/ Procalamine
a) Protein (g) from Procalamine:

40 mL Jevity/hour $\times 24$ hoars $=960 \mathrm{~mL}$ / day $90-43 \mathrm{~g}=47 \mathrm{~g}$

$$
\frac{960 \mathrm{~m} / 44.3 \mathrm{~g} \text { protean }}{1000 \mathrm{mc}}=43 \mathrm{~g} \text { protein from Juovity }
$$

c) Rate of procalamine: $\frac{1621 \mathrm{~mL}}{24 \text { hours }}=68 \mathrm{~mL} /$ hour
d) Kcal from Jevity: $\frac{960 \mathrm{~mL}}{} 1.06 \mathrm{kcal}(\mathrm{mL} \quad 1018 \mathrm{kcal}$
15. needs 1,2,00 Calories, 760 g protein in less than $1,000 \mathrm{~mL}$ with osmolality ls than 600 mOsm .
Diabetisource $A C=05 m_{0}=450^{\circ}$

$$
\begin{array}{l|l|l}
1,200 \mathrm{kcal} & \mathrm{mc} \\
\hline 1.2 \mathrm{kcal}
\end{array}=1000 \mathrm{~mL} \quad \frac{1000 \mathrm{~mL} / \frac{609}{1000 \mathrm{~mL}}}{}=60 \mathrm{~g} \mathrm{protein}
$$

$1,000 \mathrm{~mL}$ must be delivered
16. Jevity 1.5 half strength at $83 \mathrm{ml} /$ hor for 22 hours
a) Calorics: $83 \mathrm{~mL} \times 22$ hours $=1826 \mathrm{~mL} \div 2=913 \mathrm{~mL}$ levity 1.5

$$
913 \mathrm{~mL} \left\lvert\, \frac{1.5 \mathrm{kcal}}{\mathrm{~mL}}=1370 \mathrm{kca}\right.
$$

b) Protein (g): $\frac{913 \mathrm{~m} 4}{\frac{63.8}{m L 1,000}}=58 \mathrm{~g}$
c) total volume: $83 \mathrm{mc} \times 22$ hours $=1826 \mathrm{mc} \div 2=913 \mathrm{mc}$ Jevity 1 s
d) free fid: $\frac{913 \mathrm{~mL} / 760 \mathrm{~mL}}{1000 \mathrm{~mL}}=694 \mathrm{~mL}$ free water
e) total free fluid: $694 \mathrm{~mL}+913 \mathrm{~mL}$ water $=1607 \mathrm{~mL}$
17. 112 g protein, $2,875 \mathrm{kcal}, 3,100 \mathrm{~mL}$ total fid ± 100 for 89 kg

* IChose a prokin
$\begin{aligned} & 7.0 \% A A \\ & \text { Solution, } D_{60}\end{aligned} \quad \frac{112 \mathrm{~g}}{0.07}=1600 \mathrm{mCAA} \mathrm{7.0} \mathrm{\%} \quad 112 \mathrm{~g} \times 4 \mathrm{kcal} / \mathrm{g}=448 \mathrm{kcal}$
Solution, D_{60}
Solution with $C H O$
echo load
$4 \mathrm{mg} / \mathrm{kg} / \mathrm{min}$, and
a $10^{\%}$ fat
Solution
$4 \times 89 \times 1440=512640 \div 1,000=513 \mathrm{~g}$ C40

$$
\begin{aligned}
& \frac{513 \mathrm{gcto}}{0.6}=855 \mathrm{mc} D_{60} \quad 513 \times 3.4 \mathrm{kcal} / \mathrm{g}=1744 \mathrm{kcal} \\
& 2,875 \text { total } \mathrm{Kcal}-448 \mathrm{kcal} \text { from protean- } 1744 \mathrm{kca} \text { from } \mathrm{cHo}=683 \mathrm{kcal} \\
& \text { left }
\end{aligned}
$$

fat

$$
\begin{aligned}
& \frac{683 \mathrm{kcal}}{550}=1.24 \text { bags/day } \times 500 \mathrm{~mL} / \mathrm{bag}=621 \mathrm{~mL} \text { for } 16 \% \text { tat solution/day } \\
& 1.24 \\
& \times \frac{50 \mathrm{~g}}{62 \mathrm{~g} / \mathrm{day}} \quad \text { Fat load: } \frac{6 \mathrm{gg}}{\mathrm{~kg}}=\frac{62 \mathrm{~g}}{89 \mathrm{~kg}}=0.69 \mathrm{~g} / \mathrm{kg}
\end{aligned}
$$

total Volume: $1600 \mathrm{mLLO} A A A+855 \mathrm{~mL} D_{L_{0}}+621 \mathrm{mc} 10 \% \mathrm{fat}=307 \mathrm{~mm}$

$$
\begin{aligned}
& \text { final } A A\left[D=\frac{112 \mathrm{~g}}{30716 \mathrm{mc}}=3.6 \%\right. \\
& \text { final } \mathrm{CHO}[]=\frac{513 \mathrm{~g}}{3076 \mathrm{mc}}=16.7 \%
\end{aligned}
$$

